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Ingenol1 (1), isolated from the genus Euphorbia, has
been of great interest as a synthetic target2 because of
its unusual structure involving an “inside-outside” bridged
BC ring coupled with a broad spectrum of biological
activities (Figure 1).3 Construction of the highly strained
trans-bridged BC ring system of ingenol through a direct
cyclization reaction has proved difficult, and therefore,
multistep transformations have been required.2f,h,p In the
present paper, we describe a new entry to ingenane
skeleton synthesis via a tandem cyclization-rearrange-
ment strategy.4
The trans-decalinol derivative, including the side chain

with a dicobalt hexacarbonyl propargyl cation,5 was de-
signed as a precursor of tandem cyclization-rearrange-
ment reactions (Scheme 1). The intramolecular electro-
philic addition of the propargyl cation moiety to the eth-
ylidene carbon would afford the tricyclic tertiary cation
intermediate that, in turn, undergoes rearrangement to
yield the desired ingenane skeleton.
This strategy has several advantages: (1) The confor-

mational rigidity of the trans-decalin framework as well
as the dicobalt hexacarbonyl propargyl cation moiety
would facilitate the cyclization of the C ring. (2) The
trans-diaxial relationship between Ha and the hydroxy
group of the decalinol would be advantageous for induc-

ing smooth transformation to the ingenane skeleton
having the unique “inside” R-proton that is almost
antiparallel to the carbonyl group. (3) Stereocontrol at
the C(11) position (ingenane numbering) would be
achieved by using the (E)-isomer of the ethylidenedecalin
derivative. (4) The dicobalt hexacarbonyl acetylene
moiety of the product would be useful as a flag for
installation of the D ring.
The ingenane skeleton precursor was prepared as

shown in Scheme 2. trans-Decalinol 3 with three con-
tinuous chiral centers was synthesized from keto ester
2, which was easily prepared according to a previously
described procedure,6 through diastereoselective epoxi-
dation followed by regioselective hydrolysis of the ep-
oxide.7 Diol 3 was converted into dichloroolefin 4 via
Swern oxidation and Horner-Emmons reaction. Suc-
cessive treatment of 4 with excess butyllithium and
methyl chloroformate afforded an acetylenic ester that
was reduced to propargyl alcohol 5. Acetylation followed
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Scheme 1

Scheme 2a

a Key: (a) Supporting Information; (b) DMSO, (COCl)2, Et3N,
CH2Cl2, 100%; (c) Cl3CPO(OEt)2, BuLi, THF-Et2O, -100 °C to
rt, 95%; (d) BuLi, THF, -78 °C thenMeOCOCl, -45 °C; (e) DIBAL,
toluene, -78 °C, two steps 67%; (f) Ac2O, Et3N, DMAP, CH2Cl2,
97%; (g) Co2(CO)8, CH2Cl2, rt, 98%.
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by complexation using Co2(CO)85 gave dicobalt hexacar-
bonyl propargyl cation precursor 6.8
Initial attempts to induce a tandem cyclization-

rearrangement reaction of propargyl acetate 6 under the
influence of an equimolar amount of Lewis acid were
unsuccessful. Thus, the reactions with TiCl4 and SnCl4
gave complex mixtures, and only a small amount of allyl
alcohol 7 was obtained in the presence of BF3‚OEt2,
EtAlCl2, or Me2AlCl (Scheme 3).
The formation of 7 indicates that the dicobalt hexa-

carbonyl propargyl cation attacks the ethylidene carbon
to generate the tricyclic tertiary cation intermediate,
which prefers â-elimination rather than rearrangement
of the carbon framework. We envisioned that in situ
activation of the hydroxy group by forming a metal
alkoxide would significantly accelerate the rearrange-
ment pathway. Use of 2 equiv of an aluminum reagent
was expected to be suitable for this purpose because a
variety of aluminum reagents can be easily prepared from
trimethylaluminum.9 The reactions of 6 with several
aluminum reagents are summarized in Table 1.
Although the use of Me2AlCl was not effective (entry

1), a small amount of the desired product 8 (Figure 2)8
was obtained by the use of Me2AlOTf or MeAl(OTf)2
(entries 2 and 3), and MeAl(OCOCF3)210 afforded 8 as the
major product (entry 4). These results suggest that low
Lewis-acidity of an aluminum reagent is essential for the
pinacol-type rearrangement promoted by the aluminum
alkoxide of the decalinol. After further investigation,
aluminum 2,6-dimethyl-4-nitrophenoxide was found to

give the most satisfactory results (entry 5), which con-
trast with the reaction of aluminum 4-nitrophenoxide,
which resulted in recovery of the starting material (entry
6). The methyl groups at the o-position of 4-nitrophenol
seem to play an important role perhaps by activating the
aluminum reagent by reducing aggregation.11
Finally, reductive deprotection of the dicobalt hexa-

carbonyl acetylene moiety of 8 was examined. The
hydrogenation catalyzed by Wilkinson complex12 as well
as Birch reduction using lithium metal afforded the
desired product 9 having the C(13)-C(14) double bond,
which would be useful for installation of the D ring via
cyclopropanation reaction (eq 1).

In conclusion, we developed a new method for con-
structing the highly strained ingenane skeleton by a
tandem cyclization-rearrangement strategy. Product 9,
which contains the C(11) R-methyl group as well as the
C(13)-C(14) double bond, shows promise for the total
synthesis of ingenol. We are currently investigating the
synthesis and tandem cyclization-rearrangement reac-
tions of functionalized decalinol derivatives.
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Scheme 3

Table 1. Reactions of 6 with Aluminum Reagents

products (%)b

entry AlX3
a 7 8 6

1 Me2AlCl 50
2 Me2Al(OTf) 69 13
3 MeAl(OTf)2 66 13
4 MeAl(OCOCF3)2 23 38 24
5 MeAl(OCOCF3)(OAr1)c 21 77
6 MeAl(OCOCF3)(OAr2)c 80

a Aluminum reagents except for Me2AlCl were prepared from
a 1 M hexane solution of Me3Al and the corresponding acids or
phenols at room temperature. Acetate 6 was treated with 2.2
equiv of an aluminum reagent in CH2Cl2 at -23 °C to rt.
b Determined by 1H NMR of the crude product using CHBr3 as an
internal standard. c Ar1 ) 2,6-(CH3)2-4-(NO2)C6H2, Ar2 )
4-NO2C6H4.

Figure 2. ORTEP drawing of cobalt complex 8.
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